
Safety through quality

Document ID: MC-WP-012 5 factors embedded testing v4 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

5 key factors to consider when selecting an embedded
testing tool

W H I T E P A P E R

 5 key factors to consider when selecting an embedded testing tool | page i

Contents
1.	 Why is embedded software testing important	 1

2.	 Reference system: FADEC		 2

3.	 Factor #1: Flexibility		 3

	 3.1 Testing on-host and on-target		 3

	 3.2 Verification activities	 	 4

	 3.3 Language support		 5

	 3.4 Test authoring formats	 	 6

	 3.5 Flexible licensing		 8

4.	 Factor #2: Interoperability		 9

	 4.1 Testing in continous integration environments	 	 10

	 4.2 Requirements management	 	 11

5.	 Factor #3: Efficiency	 	 12

	 5.1 Easy startup		 12

	 5.2 Low overheads	 	 13

	 5.3 Results analysis	 	 14

6.	 Factor #4: Reliability		 15

	 6.1 Qualification kits	 	 16

7.	 Factor #5: Futureproof		 17

8.	 Conclusion		 18

page 1 | 5 key factors to consider when selecting an embedded testing tool

Modern embedded software is trusted to directly control
critical functions of complex machines like cars and airplanes.
This trust can only be established through the use of high-
quality development practices and extensive testing.

Guidance such as DO-178C and ISO 26262 exists to ensure that clear, implementable
steps can be taken by embedded system developers to adhere to best practices
while also prescribing specific testing requirements dependent on the criticality of the
system under test.

A range of commercial embedded testing tools designed to make rigorous embedded
software testing more efficient and cost-effective are available. In this guide, we will
detail 5 key factors to consider when choosing an embedded testing tool.

1.	Why is embedded software
testing important?

 5 key factors to consider when selecting an embedded testing tool | page 2

Throughout this guide, we will consider key factors in
reference to an example modern embedded system; a Full
Authority Digital Engine Control system (FADEC).

FADECs are one of the most critical systems in a modern aircraft. With direct
permission to change aircraft behavior, they are certified to the highest DO-178C
Design Assurance Level (DAL), level “A”.

Producing the necessary test evidence to certification authorities that such a system
meets its requirements requires a great deal of testing effort. This is a real-world use
case where advanced embedded testing tools would commonly be used.

2.	Reference system: FADEC

Figure 1 – FADEC model for jet engine

page 3 | 5 key factors to consider when selecting an embedded testing tool

In on-host testing,

an application is

tested on a host

computer that has a

different hardware

environment to the

final application. In

on-target testing, an

application is tested

on the hardware to be

deployed (the target).

On-host software
testing

Modern embedded developers use a wide range of
development approaches, techniques and workflows.
Considering how frequently these approaches evolve, it is
important to choose a flexible software testing tool that
adapts to how you work now and how you might work in the
future.

3.1	 Testing on-host and on-target
It is common practice when developing embedded systems to perform both on-host
and on-target software testing.

On-host testing has several benefits, including ease of setup, the ability to start testing
quickly and a lower associated cost. The main advantage for most projects is that
on-host testing can be run continuously throughout the whole software development
life cycle so errors can be fixed early, even when access to test rigs is not available at
the start of verification.

On-host testing can also be performed off-site easily, such as by subcontracted
organizations. Performing on-host testing doesn’t replace the need for on-target testing,
however, as software behavior often depends greatly on the hardware environment
the software is hosted on. Therefore, on-target testing is needed to provide assurance
that the final system behaves as expected.

When selecting an embedded testing tool, it makes sense to choose one that
can perform both on-target and on-host testing. This flexibility will let you use
the same tool to perform testing throughout your project. Other features to
look out for include the ability to use the same test suite for both on-host and on-
target testing and the ability to merge results from on-host and on-target testing.
Rapita Verification Suite (RVS), for example, lets you write tests that can be run both
on-host and on-target. It also allows on-host and on-target test results to be merged
into a single report for easily analysis.

3.	Factor #1: Flexibility

 5 key factors to consider when selecting an embedded testing tool | page 4

Structural coverage

is a measurement

of how much code

is executed during

testing and is a metric

often used to assess

the completeness of

requirements-based

testing.

Structural
coverage

3.2	 Verification activities
A number of different verification activities may be rquired to demonstrate that
embedded software is reliable. These include, for example, requirements-based
functional testing, structural coverage analysis and worst-case execution time analysis.

As reducing the number of tools you use will increase your efficiency, the ideal testing
tool will be flexible and support as many of the verification activities you need to do as
possible. For example, RVS supports requirements-based functional testing (RapiTest),
structural coverage analysis (RapiCover) and worst-case execution time analysis
(RapiTime) all from one integrated platform.

FADEC Example

We need to do on-target testing as the FADEC is a DO-178C DAL A development.
We want to start testing as early as possible to avoid nasty surprises later in the
project, but we won’t be able to start on-target testing until late in the project
as the hardware is still being developed. The ideal testing tool will let us create
tests that will run both on-host initially then on-target later in the software
verification lifecycle.

FADEC Example

As the project is a DO-178C DAL A project, many verification activities are needed
for this level of compliance. The ideal testing tool for the project would be able
to perform a range of activities, for example performing requirements-based
testing, structural coverage analysis and worst-case execution time analysis.
This will reduce project costs and improve efficiency as engineers can perform
all activities from the same toolsuite. It will also reduce the number of qualified
target integrations required, the number of qualification kits and reduce
tool-learning costs.

Worst-case execution

time is the maximum

length of time a task

takes to execute on

a specific hardware

platform. WCET is

a metric commonly

used in reliable

real-time systems

which have a non-

negotiable deadline

for execution.

Worst-case execution
time

page 5 | 5 key factors to consider when selecting an embedded testing tool

3.3	 Language support
Choosing an embedded testing tool that supports a range of key embedded
programming languages, and not only your “core” language is a very sensible way to
de-risk your project in terms of deadlines and budgets.

While new code for a project may all be written in one “core” language, libraries, APIs
or other supplemental code may be utilized in the system under test that is not written
in the “core” language.

If the language support of tools is not properly considered during planning, it may be
the case that supplementary codebases are not supported by the tool you choose.
Introducing new tooling later in the development lifecycle to address these gaps can
add significant costs and inefficiencies in your verification workflow.

Advanced embedded software testing tools support a range of the most
commonly used embedded programming languages. RVS, for example,
supports Ada, C and C++ code. As these are the three main languages used to
write embedded software, the support of these languages ensures that most
projects can perform all of their on-host and on-target testing across their
entire codebase using the same tool.

Figure 2 – RVS supported languages

FADEC Example

Our system is written in C, but includes C++ libraries. For this project,a tool
being able to support both C and C++ as a minimum is an important criteria
when choosing a testing tool. This will ensure that the project will not require
additional tools for software testing, reducing project cost and improving
efficiency.

 5 key factors to consider when selecting an embedded testing tool | page 6

3.4	 Test authoring formats
There are a variety of ways to author tests designed for embedded software. The
most direct way to write tests is to use a standard programming language to define
them. This can be done either by writing test code in the software itself or storing it in
an external file. This is a viable testing option for small projects where engineers are
programming experts, though for compliance with guidelines such as DO-178C, you
would not be able to include internal test code in your final software.

Functional testing tools often include other types of testing formats that can make
testing easier and more efficient. The most common formats can be categorized as
GUI-based test formats, spreadsheets and platform-specific scripting languages.

•	 GUI-based testing formats – some embedded testing tools let you write tests
directly in their Graphical User Interface (GUI). Where this is offered, writing
tests in this way will typically be made easy thanks to helpful features such as
autocompletion and automatic error checking. Another benefit of writing tests
in this way is that testers should not require an in-depth knowledge of the
programming language of the system under test. Drawbacks of writing tests in
a GUI-based testing format include that it can be difficult to migrate such tests
to another tool if this is needed in the future and that GUI-based testing formats
cannot typically be easily reviewed for differences between different test revisions.

•	 Spreadsheets – spreadsheets are a popular method of test authoring as they
are easy to use and highly portable. Also, spreadsheet test users should not need
an in-depth knowledge of the programming language of the system under test
to be able to write tests. On the downside, testers will need to understand the
spreadsheet format itself. Also, some spreadsheet formats may not provide easy
ways to use certain features that are easy to use with other formats, such as
writing tests with conditional logic. Another downside is that spreadsheet tests
cannot typically be easily reviewed for differences between different test revisions.

•	 Tool-specific scripting languages – some embedded testing tools offer custom
scripting languages specifically designed to drive tests on that platform, like the
RapiTest Scripting Language. As these languages are specifically designed for
testing, they typically provide a feature-rich and efficient way of writing tests
for engineers that can learn the language. Some downsides of using scripting
languages are that engineers will need to learn the language, making it less suitable
for those without programming experience, and that migration of tests written in
these formats can be a concern as tests will not be directly supported by other
testing platforms.

page 7 | 5 key factors to consider when selecting an embedded testing tool

As there are benefits and drawbacks to different test formats, the best embedded
software testing tools will let you write tests in a range of formats. For example, RVS’s
functional testing plugin RapiTest lets you write tests in mature and well documented
spreadsheet and script formats, and a GUI-based testing format for the tool is coming
in 2021.

Figure 3 – Writing tests in RVS using speadsheets

FADEC Example

Some of the test engineers working on the project have little experience writing
C and C++ code. Also, some of the software functions are being developed and
tested by a subcontracted organization, while the main organization will be
reviewing the tests and results. An ideal testing tool for this project will include
test formats that don’t require test engineers to know how to write C and C++,
such as GUI-based test formats or spreadsheets, and tests that are easily
diffable such as a tool-specific scripting language, as this will allow the main
organization to easily review tests written by the subcontracted organization.

 5 key factors to consider when selecting an embedded testing tool | page 8

Licensing
options

Find out more

about RVS licensing

options at:

rapitasystems.com/

licensing

3.5	 Flexible licensing
Different organizations have different team structures and workflows. The testing
tool you use should fit into your current team structure rather than the other way
around. Some testing tools may include licensing options that let multiple people
within the same organization (or even different organizations) use the software in a
shared environment by offering floating licenses. Licensing could be offered on either
a subscription basis or perpetual right to use the tool, which can be a great option for
long-running projects such as aerospace software development projects.

Using a tool with flexible licensing options will let you select the best option to align
with your project, budget, and team structure. RVS, for example, lets you license
software on either a node-locked (a license can only be used on specific machines) or
floating (a license can be used by anyone within a team determined by the customer)
basis, with either subscription-based or perpetual licensing durations.

Figure 4 – RVS license options

FADEC Example

The main organization has multiple working sites in different time zones and
wants to share licenses with subcontractors. A “floating” license can support all
of these groups and will also allow the main organization to track license usage
throughout the software verification process. As testers are working across
multiple time zones, using a floating license can also reduce the number of
licenses that need to be purchased, reducing overall testing costs. As we expect
that the project will run for many years, the ideal licensing duration will be a
perpetual license, reducing overall cost compared to purchasing and renewing
a subscription-based license.

https://www.rapitasystems.
com/licensing
https://www.rapitasystems.
com/licensing
https://www.rapitasystems.
com/licensing

page 9 | 5 key factors to consider when selecting an embedded testing tool

Software development can be made easier by using third-party
tools to manage things such as version control, requirements
and automated testing.

These tools help to ensure that all developers are working on the latest builds, running
the right tests, and that test engineers can all see the same results. Integration with
such tools can save a lot of time and reduce errors in the embedded testing process.

4.	Factor #2: Interoperability

Figure 5 – Software development tools interoperability

Modern software
development practices

It is common for

software developers

to use a wide range

of third-party tools to

increase the efficiency

of tasks such as

software configuration

management and

continuous building

and verification of

code.

In contexts where

requirements-based

testing is critical, such

as when following DO-

178C, requirements

management tools

are often used to

help manage the

large number of

requirements and

related artifacts

typical in a project.

 5 key factors to consider when selecting an embedded testing tool | page 10

4.1	 Testing in continuous integration
environments

Continuous integration servers are often used to keep track of software development
over time. When an automated test tool can interface with the continuous integration
server being used, tests can be automatically run with each new revision of the software.
This helps with software quality control as it lets you track your testing progress over
time and identify which versions of the source code caused failures. Interoperation
between your testing tool and your continuous integration tool can help you ensure
that your verification results stay up to date throughout your project’s entire life cycle.

If you are performing requirements-based testing, you may want to select an
embedded testing tool that integrates with the continuous integration software you
are using, if you are using one. RVS, for example, integrates with Jenkins and Bamboo,
the most popular continuous integration tools on the market.

Figure 6 – RVS integration with Jenkins and Bamboo

FADEC Example

Our organization is using the Jenkins continuous integration tool. Engineers at
both sites are working on different sections of the code and are using a shared
repository to keep up to date with the project. The ideal testing tool for the
organization will be one that lets them automatically run tests with each new
build and view their results within the Jenkins interface.

page 11 | 5 key factors to consider when selecting an embedded testing tool

4.2	 Requirements management
Requirements management tools help to manage the large number of artifacts that
are produced and tracked in a project such as requirements, tests, and reviews in a
verification project, and help maintain and track the traceability between these artifacts.

When selecting an embedded software testing tool, you may want to select one
that integrates with the requirements management software you are using. RVS,
for example, integrates with most requirements management software via the
Requirements Interchange Format (ReqIF). In this way, users can manage their
requirements-based testing plans by importing test results from RVS directly into their
requirements management software.

Figure 7 – RVS uses the ReqIF interchange format to import requirements
from 3rd part tools

FADEC Example

Our organization is using Rational® DOORS® to manage requirements, test plans
and reviews and support traceability between these artifacts. The ideal testing
tool for our organization will be one that lets us import requirements information
from Rational DOORS into our testing project and use this information when
displaying and exporting results.

 5 key factors to consider when selecting an embedded testing tool | page 12

5.1	 Easy startup
A well-designed and intuitive GUI makes learning and using embedded testing software
easier. Good embedded testing software will include practical tutorials to help users
learn how to use the software. In addition, detailed documentation will help both
beginners and experts alike understand how to efficiently use the tool they’ve chosen.
RVS, for example, includes a comprehensive set of practical tutorials accessible from
within the GUI that make it easy to get started using the tool and writing tests, as well
as comprehensive documentation.

5.	Factor #3: Efficiency

FADEC Example

Test engineers of varying expertise will need to learn how to write and manage
tests quickly. As engineers plan to use multiple test authoring formats to best
meet their needs (see Test authoring formats), they will need to learn how to
use these formats as well as the testing software itself. The ideal testing tool
for the organization will have an intuitive user-interface and include practical
tutorials and detailed documentation including language and grammar guides
for any scripting formats available in the software.

page 13 | 5 key factors to consider when selecting an embedded testing tool

5.2	 Low overheads
While overheads do have an effect on the efficiency of on-host testing, this effect is
much more pronounced for on-target testing, where target resource limitations may
require the use of multiple builds to fully test the software.

The ideal embedded testing tool will make the best use of the capabilities and
limitations of each system to minimize overheads. Tools with lower overheads will let
you fit more tests into each build of your code even when your target’s RAM, code
size or execution time is constrained, so you will need fewer builds to fully test your
code. RVS, for example, has flexible integration libraries and an advanced Modified
Condition/Decision Coverage (MC/DC) library which reduce overheads for testing
software execution time and coverage.

An overhead is any

combination of excess

computation time,

memory or other

resources needed to

perform a task.

Overheads

FADEC Example

Our customer is requesting novel functionality to be included in the FADEC
system. As is common in avionics projects, there is limited RAM and code size
on the hardware on which the system will be hosted. Selecting a testing tool
with low RAM and code size overheads will reduce the number of builds needed
to test the software, thus increasing project efficiency.

Figure 8 – RapiCover’s relative code size compared to other similair tools

 5 key factors to consider when selecting an embedded testing tool | page 14

5.3	 Results analysis
Advanced GUI features can make it much easier to analyze embedded testing results.
This includes the use of colored charts, filtering, sorting and searching options to
locate and understand results, configurable display options to meet user preferences
and accessibility needs, and configurable export formats. RVS, for example, includes
a range of display options such as treemaps that help users understand results and
filter results to show results for specific areas of the code, failed tests, or tests for
specific requirements. RVS also enables users to export results in multiple different
formats.

FADEC Example

Our relatively large project will include many results and we will need to submit
our test results for DO-178C certification. The ideal testing tool will include a
range of options that make it easy to filter results to specific modules in the code,
and will support the exporting of results into a format suitable for providing to
our certification authority.

Figure 9 – RVS Graphical User Interface

page 15 | 5 key factors to consider when selecting an embedded testing tool

DO-330

RTCA DO-330 is a

document which

provides tool-specific

guidance for building

airborne and ground

based software. It may

also be used in other

domains such as

automotive, space and

electronic hardware.

As critical software must be robust, any testing tools used
to test the software must be reliable. This is even more
important when working towards compliance guidelines such
as DO-178C, where evidence must be provided to demonstrate
that your testing tool is robust and reliable according to “DO-
330: Software Tool Qualification Considerations”.

6.	Factor #4: Reliability

Figure 10 – RTCA DO-330: Software Tool Qualification Considerations

 5 key factors to consider when selecting an embedded testing tool | page 16

6.1	 Qualification kits
The use of “Qualification kits” is the aerospace industry standard way of providing
evidence that a testing tool is robust with respect to specific criteria. The gold
standard set of criteria for tool qualification is listed in the “Software Tool Qualification
Considerations (DO-330)” document, which can be applied to any type of software but
is used most in the aerospace software domain.

The ideal testing tool will have an associated qualification kit available alongside it
that can be used to demonstrate that the tool meets DO-330 considerations. For
example, RVS tools for requirements-based testing (RapiTest), structural coverage
analysis (RapiCover) and worst-case execution time analysis (RapiTime) have
easy-to-use qualification kits available for DO-178C and ISO 26262, simplifying the
certification process.

Figure 11 – Sample qualification kit

FADEC Example

The software will need to comply with DO-178C at Design Assurance Level (DAL)
“A”. The ideal testing tool will have an associated DO-178C qualification kit that
has been used to support qualification of previous DO-178C software products
to DAL A level.

page 17 | 5 key factors to consider when selecting an embedded testing tool

RVS
roadmap

Keep up to date with

RVS tool development

and learn about

future features and

enhancements.

rapitasystems.com/

products/rvs/

roadmap

Embedded testing projects can take a lot of time, especially in the aerospace industry,
so selecting an embedded testing tool is a significant commitment. When selecting
your tool, ensure that the vendor will continue to support the tool for the entirety of
your project plus a few more years (in case of delays). Rapita Systems, for example,
offers frozen version support for RVS, ensuring that the version of the software you
purchase will be available in the future.

You will also benefit from making sure that your tool is compatible with the most recent
innovations in the embedded software industry, for example, the ability to perform
on-target timing analysis testing on multicore processors. RVS, for example, is under
constant development and has recently been improved to support the analysis of
GPUs and complex multicore CPUs.

7.	Factor #5: Futureproof

FADEC Example

Our organization has decided to use a multicore processor to meet the
increasing functionality needs of the software in the project. As a DO-178C DAL
A development, it will thus need to comply with the objectives identified in A(M)C
20-193, including demonstrating that the multicore software operates within its
timing budgets in the presence of interference caused by contention for shared
resources. The ideal testing tool will either already be able to support multicore
timing analysis or have a roadmap to do so in the future.

https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap

 5 key factors to consider when selecting an embedded testing tool | page 18

The ideal testing tool for your embedded software testing project depends on many
factors, but there are some key things to look out for:

•	 Flexible tools can give you more for your money and reduce the number of tools
you need to use. For embedded testing tools, you should look for flexibility in
terms of tools providing both on-host and on-target testing, support for different
verification activities, language support, test authoring formats and licensing
options.

•	 Interoperable tools, which work well with other third-party tools, support a
smoother and more efficient testing workflow. For embedded testing tools,
interoperability with continuous integration and requirements management tools
are key features to look out for.

•	 Efficient tools can save time on your project and reduce the risk of schedule slips.
For embedded testing tools, ease of startup, low on-target testing overheads and
time-saving analysis features are key things to look out for.

•	 The reliability of an embedded testing tool is crucial, especially so for tools used in
projects working towards certification such as DO-178C or ISO 26262. You should
ensure that any tools you evaluate have been shown to be reliable, which is often
demonstrated by the availability of qualification kits and a tool’s proven history of
being used to support successfully certified projects.

8.	Conclusion

page 19 | 5 key factors to consider when selecting an embedded testing tool

You can futureproof your testing environment by choosing a tool that is under
continuous development to meet modern verification needs, such as the use of
emerging technologies.

The Rapita Verification Suite (RVS) has been used in the critical embedded industry
for over 15 years and supported a number of avionics (civil & defense) and automotive
projects globally. Qualification kits for qualified RVS products have supported more
than 20 DO-178B and C certification projects up to and including DAL A.

“We use Rapita tools on some of the
world’s most complicated flight control
systems. Compared to previous tools
we’ve used in the past, RVS’s performance
has been much more reliable and robust.”

Collins Aerospace® Flight Controls

Figure 12– Rapita Verification Suite

Collins Aerospace® is a trade mark of Hamilton Sundstrand Corporation in United States under number 6488292. Rational® and DOORS® are trade marks of

International Business Machines Corporation in United States under numbers 78086102 and 78124800.

About Rapita
Rapita Systems provides on-target software verification tools and services globally
to the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety
and certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at:
rapitasystems.com/downloads

Contact
Rapita Systems Ltd.
Atlas House
York, YO10 3JB
UK

+44 (0)1904 413945

Rapita Systems, Inc.
41131 Vincenti Ct.
Novi, Mi, 48375
USA

+1 248-957-9801

Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G C U S T O M E R S W I T H :

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V Services

Integration Services

Qualification

SW/HW Engineering

Compiler Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems

mailto:info%40rapitasystems.com?subject=

