
Safety through quality

Document ID: MC-WP-012 5 factors embedded testing v4 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

5 key factors to consider when selecting an embedded
testing tool

W H I T E P A P E R

 5 key factors to consider when selecting an embedded testing tool | page i

Contents
1. Why is embedded software testing important 1

2. Reference system: FADEC 2

3. Factor #1: Flexibility 3

 3.1 Testing on-host and on-target 3

	 3.2	Verification	activities	 	 4

 3.3 Language support 5

	 3.4	Test	authoring	formats	 	 6

 3.5 Flexible licensing 8

4. Factor #2: Interoperability 9

	 4.1	Testing	in	continous	integration	environments	 	 10

	 4.2	Requirements	management	 	 11

5.	 Factor	#3:	Efficiency	 	 12

 5.1 Easy startup 12

	 5.2	Low	overheads	 	 13

	 5.3	Results	analysis	 	 14

6. Factor #4: Reliability 15

	 6.1	Qualification	kits	 	 16

7. Factor #5: Futureproof 17

8. Conclusion 18

page 1 | 5 key factors to consider when selecting an embedded testing tool

Modern embedded software is trusted to directly control
critical functions of complex machines like cars and airplanes.
This trust can only be established through the use of high-
quality development practices and extensive testing.

Guidance such as DO-178C and ISO 26262 exists to ensure that clear, implementable
steps can be taken by embedded system developers to adhere to best practices
while	also	prescribing	specific	testing	requirements	dependent	on	the	criticality	of	the	
system under test.

A range of commercial embedded testing tools designed to make rigorous embedded
software	testing	more	efficient	and	cost-effective	are	available.	 In	this	guide,	we	will	
detail 5 key factors to consider when choosing an embedded testing tool.

1. Why is embedded software
testing important?

 5 key factors to consider when selecting an embedded testing tool | page 2

Throughout this guide, we will consider key factors in
reference to an example modern embedded system; a Full
Authority Digital Engine Control system (FADEC).

FADECs are one of the most critical systems in a modern aircraft. With direct
permission	 to	 change	 aircraft	 behavior,	 they	 are	 certified	 to	 the	 highest	 DO-178C	
Design Assurance Level (DAL), level “A”.

Producing	the	necessary	test	evidence	to	certification	authorities	that	such	a	system	
meets	its	requirements	requires	a	great	deal	of	testing	effort.	This	is	a	real-world	use	
case where advanced embedded testing tools would commonly be used.

2. Reference system: FADEC

Figure 1 – FADEC model for jet engine

page 3 | 5 key factors to consider when selecting an embedded testing tool

In on-host testing,

an application is

tested on a host

computer that has a

different	hardware	

environment	to	the	

final	application.	In	

on-target testing, an

application is tested

on the hardware to be

deployed (the target).

On-host software
testing

Modern embedded developers use a wide range of
development approaches, techniques and workflows.
Considering how frequently these approaches evolve, it is
important to choose a flexible software testing tool that
adapts to how you work now and how you might work in the
future.

3.1 Testing on-host and on-target
It is common practice when developing embedded systems to perform both on-host
and on-target software testing.

On-host	testing	has	several	benefits,	including	ease	of	setup,	the	ability	to	start	testing	
quickly	 and	 a	 lower	 associated	 cost.	 The	main	 advantage	 for	most	 projects	 is	 that	
on-host testing can be run continuously throughout the whole software development
life	cycle	so	errors	can	be	fixed	early,	even	when	access	to	test	rigs	is	not	available	at	
the	start	of	verification.

On-host	 testing	 can	 also	 be	 performed	 off-site	 easily,	 such	 as	 by	 subcontracted	
organizations. Performing on-host testing doesn’t replace the need for on-target testing,
however, as software behavior often depends greatly on the hardware environment
the software is hosted on. Therefore, on-target testing is needed to provide assurance
that	the	final	system	behaves	as	expected.

When selecting an embedded testing tool, it makes sense to choose one that
can	 perform	 both	 on-target	 and	 on-host	 testing.	 This	 flexibility	 will	 let	 you	 use	
the same tool to perform testing throughout your project. Other features to
look out for include the ability to use the same test suite for both on-host and on-
target testing and the ability to merge results from on-host and on-target testing.
Rapita Verification Suite (RVS), for example, lets you write tests that can be run both
on-host and on-target. It also allows on-host and on-target test results to be merged
into a single report for easily analysis.

3. Factor #1: Flexibility

 5 key factors to consider when selecting an embedded testing tool | page 4

Structural	coverage	

is a measurement

of how much code

is executed during

testing and is a metric

often used to assess

the completeness of

requirements-based	

testing.

Structural
coverage

3.2		Verification	activities
A	 number	 of	 different	 verification	 activities	 may	 be	 rquired	 to	 demonstrate	 that	
embedded	 software	 is	 reliable.	 These	 include,	 for	 example,	 requirements-based	
functional testing, structural coverage analysis and worst-case execution time analysis.

As	reducing	the	number	of	tools	you	use	will	increase	your	efficiency,	the	ideal	testing	
tool	will	be	flexible	and	support	as	many	of	the	verification	activities	you	need	to	do	as	
possible. For example, RVS	supports	requirements-based	functional	testing	(RapiTest),
structural coverage analysis (RapiCover) and worst-case execution time analysis
(RapiTime) all from one integrated platform.

FADEC Example

We need to do on-target testing as the FADEC is a DO-178C DAL A development.
We want to start testing as early as possible to avoid nasty surprises later in the
project, but we won’t be able to start on-target testing until late in the project
as the hardware is still being developed. The ideal testing tool will let us create
tests that will run both on-host initially then on-target later in the software
verification	lifecycle.

FADEC Example

As	the	project	is	a	DO-178C	DAL	A	project,	many	verification	activities	are	needed	
for this level of compliance. The ideal testing tool for the project would be able
to	perform	a	range	of	activities,	 for	example	performing	requirements-based	
testing, structural coverage analysis and worst-case execution time analysis.
This	will	reduce	project	costs	and	improve	efficiency	as	engineers	can	perform	
all	activities	from	the	same	toolsuite.	It	will	also	reduce	the	number	of	qualified	
target	 integrations	 required,	 the	 number	 of	 qualification	 kits	 and	 reduce	
tool-learning costs.

Worst-case execution

time is the maximum

length of time a task

takes to execute on

a	specific	hardware	

platform. WCET is

a metric commonly

used in reliable

real-time systems

which	have	a	non-

negotiable deadline

for execution.

Worst-case execution
time

page 5 | 5 key factors to consider when selecting an embedded testing tool

3.3 Language support
Choosing an embedded testing tool that supports a range of key embedded
programming languages, and not only your “core” language is a very sensible way to
de-risk your project in terms of deadlines and budgets.

While new code for a project may all be written in one “core” language, libraries, APIs
or other supplemental code may be utilized in the system under test that is not written
in the “core” language.

If the language support of tools is not properly considered during planning, it may be
the case that supplementary codebases are not supported by the tool you choose.
Introducing new tooling later in the development lifecycle to address these gaps can
add	significant	costs	and	inefficiencies	in	your	verification	workflow.

Advanced	embedded	software	testing	tools	support	a	range	of	the	most	
commonly	used	embedded	programming	languages.	RVS, for example,
supports Ada, C and C++ code. As these are the three main languages used to
write embedded software, the support of these languages ensures that most
projects can perform all of their on-host and on-target testing across their
entire codebase using the same tool.

Figure 2 – RVS supported languages

FADEC Example

Our system is written in C, but includes C++ libraries. For this project,a tool
being able to support both C and C++ as a minimum is an important criteria
when	choosing	a	testing	tool.	This	will	ensure	that	the	project	will	not	require	
additional tools for software testing, reducing project cost and improving
efficiency.

 5 key factors to consider when selecting an embedded testing tool | page 6

3.4 Test authoring formats
There are a variety of ways to author tests designed for embedded software. The
most	direct	way	to	write	tests	is	to	use	a	standard	programming	language	to	define	
them. This can be done either by writing test code in the software itself or storing it in
an	external	file.	This	is	a	viable	testing	option	for	small	projects	where	engineers	are	
programming experts, though for compliance with guidelines such as DO-178C, you
would	not	be	able	to	include	internal	test	code	in	your	final	software.

Functional testing tools often include other types of testing formats that can make
testing	easier	and	more	efficient.	The	most	common	formats	can	be	categorized	as	
GUI-based	test	formats,	spreadsheets	and	platform-specific	scripting	languages.

• GUI-based testing formats – some embedded testing tools let you write tests
directly	 in	 their	 Graphical	 User	 Interface	 (GUI).	 Where	 this	 is	 offered,	 writing	
tests in this way will typically be made easy thanks to helpful features such as
autocompletion	 and	 automatic	 error	 checking.	 Another	 benefit	 of	 writing	 tests	
in	 this	 way	 is	 that	 testers	 should	 not	 require	 an	 in-depth	 knowledge	 of	 the	
programming language of the system under test. Drawbacks of writing tests in
a	GUI-based	 testing	 format	 include	 that	 it	can	be	difficult	 to	migrate	such	 tests	
to another tool if this is needed in the future and that GUI-based testing formats
cannot	typically	be	easily	reviewed	for	differences	between	different	test	revisions.

• Spreadsheets – spreadsheets are a popular method of test authoring as they
are easy to use and highly portable. Also, spreadsheet test users should not need
an in-depth knowledge of the programming language of the system under test
to be able to write tests. On the downside, testers will need to understand the
spreadsheet format itself. Also, some spreadsheet formats may not provide easy
ways to use certain features that are easy to use with other formats, such as
writing tests with conditional logic. Another downside is that spreadsheet tests
cannot	typically	be	easily	reviewed	for	differences	between	different	test	revisions.

• Tool-specific scripting languages –	some	embedded	testing	tools	offer	custom	
scripting	 languages	specifically	designed	to	drive	tests	on	that	platform,	 like	the	
RapiTest	 Scripting	 Language.	 As	 these	 languages	 are	 specifically	 designed	 for	
testing,	 they	 typically	 provide	 a	 feature-rich	 and	 efficient	 way	 of	 writing	 tests	
for engineers that can learn the language. Some downsides of using scripting
languages are that engineers will need to learn the language, making it less suitable
for those without programming experience, and that migration of tests written in
these formats can be a concern as tests will not be directly supported by other
testing platforms.

page 7 | 5 key factors to consider when selecting an embedded testing tool

As	 there	are	benefits	 and	drawbacks	 to	different	 test	 formats,	 the	best	 embedded	
software testing tools will let you write tests in a range of formats. For example, RVS’s
functional testing plugin RapiTest lets you write tests in mature and well documented
spreadsheet and script formats, and a GUI-based testing format for the tool is coming
in 2021.

Figure 3 – Writing tests in RVS using speadsheets

FADEC Example

Some of the test engineers working on the project have little experience writing
C and C++ code. Also, some of the software functions are being developed and
tested by a subcontracted organization, while the main organization will be
reviewing the tests and results. An ideal testing tool for this project will include
test	formats	that	don’t	require	test	engineers	to	know	how	to	write	C	and	C++,	
such as GUI-based test formats or spreadsheets, and tests that are easily
diffable	 such	 as	 a	 tool-specific	 scripting	 language,	 as	 this	will	 allow	 the	main	
organization to easily review tests written by the subcontracted organization.

 5 key factors to consider when selecting an embedded testing tool | page 8

Licensing
options

Find out more

about	RVS licensing

options at:

rapitasystems.com/

licensing

3.5 Flexible licensing
Different	 organizations	 have	 different	 team	 structures	 and	 workflows.	 The	 testing	
tool	 you	use	should	fit	 into	your	current	 team	structure	 rather	 than	 the	other	way	
around. Some testing tools may include licensing options that let multiple people
within	the	same	organization	(or	even	different	organizations)	use	the	software	in	a	
shared	environment	by	offering	floating	licenses.	Licensing	could	be	offered	on	either	
a subscription basis or perpetual right to use the tool, which can be a great option for
long-running projects such as aerospace software development projects.

Using	a	tool	with	flexible	licensing	options	will	 let	you	select	the	best	option	to	align	
with your project, budget, and team structure. RVS, for example, lets you license
software	on	either	a	node-locked	(a	license	can	only	be	used	on	specific	machines)	or	
floating	(a	license	can	be	used	by	anyone	within	a	team	determined	by	the	customer)	
basis, with either subscription-based or perpetual licensing durations.

Figure 4 – RVS license options

FADEC Example

The	main	organization	has	multiple	working	sites	 in	different	 time	zones	and	
wants	to	share	licenses	with	subcontractors.	A	“floating”	license	can	support	all	
of these groups and will also allow the main organization to track license usage
throughout	 the	 software	 verification	 process.	 As	 testers	 are	 working	 across	
multiple	 time	 zones,	 using	 a	 floating	 license	 can	 also	 reduce	 the	 number	 of	
licenses that need to be purchased, reducing overall testing costs. As we expect
that the project will run for many years, the ideal licensing duration will be a
perpetual license, reducing overall cost compared to purchasing and renewing
a subscription-based license.

https://www.rapitasystems.
com/licensing
https://www.rapitasystems.
com/licensing
https://www.rapitasystems.
com/licensing

page 9 | 5 key factors to consider when selecting an embedded testing tool

Software development can be made easier by using third-party
tools to manage things such as version control, requirements
and automated testing.

These tools help to ensure that all developers are working on the latest builds, running
the right tests, and that test engineers can all see the same results. Integration with
such tools can save a lot of time and reduce errors in the embedded testing process.

4. Factor #2: Interoperability

Figure 5 – Software development tools interoperability

Modern software
development practices

It is common for

software	developers	

to use a wide range

of third-party tools to

increase	the	efficiency	

of tasks such as

software	configuration	

management and

continuous building

and	verification	of	

code.

In contexts where

requirements-based	

testing is critical, such

as when following DO-

178C,	requirements	

management tools

are often used to

help manage the

large number of

requirements	and	

related artifacts

typical in a project.

 5 key factors to consider when selecting an embedded testing tool | page 10

4.1 Testing in continuous integration
environments

Continuous integration servers are often used to keep track of software development
over time. When an automated test tool can interface with the continuous integration
server being used, tests can be automatically run with each new revision of the software.
This	helps	with	software	quality	control	as	it	lets	you	track	your	testing	progress	over	
time and identify which versions of the source code caused failures. Interoperation
between your testing tool and your continuous integration tool can help you ensure
that	your	verification	results	stay	up	to	date	throughout	your	project’s	entire	life	cycle.

If	 you	 are	 performing	 requirements-based	 testing,	 you	 may	 want	 to	 select	 an	
embedded testing tool that integrates with the continuous integration software you
are using, if you are using one. RVS, for example, integrates with Jenkins and Bamboo,
the most popular continuous integration tools on the market.

Figure 6 – RVS integration with Jenkins and Bamboo

FADEC Example

Our organization is using the Jenkins continuous integration tool. Engineers at
both	sites	are	working	on	different	sections	of	the	code	and	are	using	a	shared	
repository to keep up to date with the project. The ideal testing tool for the
organization will be one that lets them automatically run tests with each new
build and view their results within the Jenkins interface.

page 11 | 5 key factors to consider when selecting an embedded testing tool

4.2		Requirements	management
Requirements	management	tools	help	to	manage	the	large	number	of	artifacts	that	
are	produced	and	tracked	in	a	project	such	as	requirements,	tests,	and	reviews	in	a	
verification	project,	and	help	maintain	and	track	the	traceability	between	these	artifacts.		

When selecting an embedded software testing tool, you may want to select one
that	 integrates	 with	 the	 requirements	 management	 software	 you	 are	 using.	 RVS,
for	 example,	 integrates	 with	 most	 requirements	 management	 software	 via	 the	
Requirements	 Interchange	 Format	 (ReqIF).	 In	 this	 way,	 users	 can	 manage	 their	
requirements-based	testing	plans	by	importing	test	results	from	RVS directly into their
requirements	management	software.

Figure 7 – RVS uses	 the	 ReqIF	 interchange	 format	 to	 import	 requirements	
from 3rd part tools

FADEC Example

Our organization is using Rational® DOORS®	to	manage	requirements,	test	plans	
and reviews and support traceability between these artifacts. The ideal testing
tool	for	our	organization	will	be	one	that	lets	us	import	requirements	information	
from Rational DOORS into our testing project and use this information when
displaying and exporting results.

 5 key factors to consider when selecting an embedded testing tool | page 12

5.1 Easy startup
A well-designed and intuitive GUI makes learning and using embedded testing software
easier. Good embedded testing software will include practical tutorials to help users
learn how to use the software. In addition, detailed documentation will help both
beginners	and	experts	alike	understand	how	to	efficiently	use	the	tool	they’ve	chosen.	
RVS, for example, includes a comprehensive set of practical tutorials accessible from
within the GUI that make it easy to get started using the tool and writing tests, as well
as comprehensive documentation.

5.	Factor	#3:	Efficiency

FADEC Example

Test engineers of varying expertise will need to learn how to write and manage
tests	quickly.	As	engineers	plan	to	use	multiple	test	authoring	formats	to	best	
meet their needs (see Test authoring formats), they will need to learn how to
use these formats as well as the testing software itself. The ideal testing tool
for the organization will have an intuitive user-interface and include practical
tutorials and detailed documentation including language and grammar guides
for any scripting formats available in the software.

page 13 | 5 key factors to consider when selecting an embedded testing tool

5.2 Low overheads
While	overheads	do	have	an	effect	on	the	efficiency	of	on-host	testing,	this	effect	 is	
much more pronounced for on-target testing, where target resource limitations may
require	the	use	of	multiple	builds	to	fully	test	the	software.		

The ideal embedded testing tool will make the best use of the capabilities and
limitations of each system to minimize overheads. Tools with lower overheads will let
you	fit	more	 tests	 into	each	build	of	your	code	even	when	your	 target’s	RAM,	code	
size or execution time is constrained, so you will need fewer builds to fully test your
code. RVS,	 for	example,	has	flexible	 integration	 libraries	and	an	advanced	Modified	
Condition/Decision Coverage (MC/DC) library which reduce overheads for testing
software execution time and coverage.

An	overhead	is	any	

combination of excess

computation time,

memory or other

resources needed to

perform a task.

Overheads

FADEC Example

Our	 customer	 is	 requesting	 novel	 functionality	 to	 be	 included	 in	 the	 FADEC	
system. As is common in avionics projects, there is limited RAM and code size
on the hardware on which the system will be hosted. Selecting a testing tool
with low RAM and code size overheads will reduce the number of builds needed
to	test	the	software,	thus	increasing	project	efficiency.

Figure 8 – RapiCover’s relative code size compared to other similair tools

 5 key factors to consider when selecting an embedded testing tool | page 14

5.3 Results analysis
Advanced GUI features can make it much easier to analyze embedded testing results.
This	 includes	 the	 use	 of	 colored	 charts,	 filtering,	 sorting	 and	 searching	 options	 to	
locate	and	understand	results,	configurable	display	options	to	meet	user	preferences	
and	accessibility	needs,	and	configurable	export	formats.	RVS, for example, includes
a range of display options such as treemaps that help users understand results and
filter	 results	 to	 show	 results	 for	 specific	areas	of	 the	code,	 failed	 tests,	or	 tests	 for	
specific	requirements.	RVS	also	enables	users	to	export	results	 in	multiple	different	
formats.

FADEC Example

Our relatively large project will include many results and we will need to submit
our	 test	 results	 for	DO-178C	certification.	The	 ideal	 testing	 tool	will	 include	a	
range	of	options	that	make	it	easy	to	filter	results	to	specific	modules	in	the	code,	
and will support the exporting of results into a format suitable for providing to
our	certification	authority.

Figure 9 – RVS Graphical User Interface

page 15 | 5 key factors to consider when selecting an embedded testing tool

DO-330

RTCA	DO-330	is	a	

document which

provides	tool-specific	

guidance for building

airborne and ground

based software. It may

also be used in other

domains such as

automotive,	space	and	

electronic hardware.

As critical software must be robust, any testing tools used
to test the software must be reliable. This is even more
important when working towards compliance guidelines such
as DO-178C, where evidence must be provided to demonstrate
that your testing tool is robust and reliable according to “DO-
330: Software Tool Qualification Considerations”.

6. Factor #4: Reliability

Figure 10 – RTCA	DO-330:	Software	Tool	Qualification	Considerations

 5 key factors to consider when selecting an embedded testing tool | page 16

6.1		Qualification	kits
The	 use	 of	 “Qualification	 kits”	 is	 the	 aerospace	 industry	 standard	way	 of	 providing	
evidence	 that	 a	 testing	 tool	 is	 robust	 with	 respect	 to	 specific	 criteria.	 The	 gold	
standard	set	of	criteria	for	tool	qualification	is	listed	in	the	“Software	Tool	Qualification	
Considerations (DO-330)” document, which can be applied to any type of software but
is used most in the aerospace software domain.

The	 ideal	 testing	 tool	 will	 have	 an	 associated	 qualification	 kit	 available	 alongside	 it	
that can be used to demonstrate that the tool meets DO-330 considerations. For
example, RVS	 tools	 for	 requirements-based	 testing	 (RapiTest), structural coverage
analysis (RapiCover) and worst-case execution time analysis (RapiTime) have
easy-to-use	 qualification	 kits	 available	 for	 DO-178C	 and	 ISO	 26262,	 simplifying	 the	
certification	process.

Figure 11 – Sample	qualification	kit

FADEC Example

The software will need to comply with DO-178C at Design Assurance Level (DAL)
“A”.	The	ideal	testing	tool	will	have	an	associated	DO-178C	qualification	kit	that	
has	been	used	to	support	qualification	of	previous	DO-178C	software	products	
to DAL A level.

page 17 | 5 key factors to consider when selecting an embedded testing tool

RVS
roadmap

Keep up to date with

RVS	tool	development	

and learn about

future features and

enhancements.

rapitasystems.com/

products/rvs/

roadmap

Embedded testing projects can take a lot of time, especially in the aerospace industry,
so	 selecting	an	embedded	 testing	 tool	 is	 a	 significant	 commitment.	When	 selecting	
your tool, ensure that the vendor will continue to support the tool for the entirety of
your project plus a few more years (in case of delays). Rapita Systems, for example,
offers	frozen	version	support	for	RVS, ensuring that the version of the software you
purchase will be available in the future.

You	will	also	benefit	from	making	sure	that	your	tool	is	compatible	with	the	most	recent	
innovations in the embedded software industry, for example, the ability to perform
on-target timing analysis testing on multicore processors. RVS, for example, is under
constant development and has recently been improved to support the analysis of
GPUs and complex multicore CPUs.

7. Factor #5: Futureproof

FADEC Example

Our organization has decided to use a multicore processor to meet the
increasing functionality needs of the software in the project. As a DO-178C DAL
A	development,	it	will	thus	need	to	comply	with	the	objectives	identified	in	A(M)C	
20-193, including demonstrating that the multicore software operates within its
timing budgets in the presence of interference caused by contention for shared
resources. The ideal testing tool will either already be able to support multicore
timing analysis or have a roadmap to do so in the future.

https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap
https://www.rapitasystems.
com/products/rvs/
roadmap

 5 key factors to consider when selecting an embedded testing tool | page 18

The ideal testing tool for your embedded software testing project depends on many
factors, but there are some key things to look out for:

• Flexible tools can give you more for your money and reduce the number of tools
you	 need	 to	 use.	 For	 embedded	 testing	 tools,	 you	 should	 look	 for	 flexibility	 in	
terms	of	tools	providing	both	on-host	and	on-target	testing,	support	for	different	
verification	 activities,	 language	 support,	 test	 authoring	 formats	 and	 licensing	
options.

• Interoperable tools, which work well with other third-party tools, support a
smoother	 and	 more	 efficient	 testing	 workflow.	 For	 embedded	 testing	 tools,	
interoperability	with	continuous	integration	and	requirements	management	tools	
are key features to look out for.

• Efficient	tools	can	save	time	on	your	project	and	reduce	the	risk	of	schedule	slips.	
For embedded testing tools, ease of startup, low on-target testing overheads and
time-saving analysis features are key things to look out for.

• The reliability of an embedded testing tool is crucial, especially so for tools used in
projects	working	towards	certification	such	as	DO-178C	or	ISO	26262.	You	should	
ensure that any tools you evaluate have been shown to be reliable, which is often
demonstrated	by	the	availability	of	qualification	kits	and	a	tool’s	proven	history	of	
being	used	to	support	successfully	certified	projects.

8. Conclusion

page 19 | 5 key factors to consider when selecting an embedded testing tool

You can futureproof your testing environment by choosing a tool that is under
continuous	 development	 to	 meet	 modern	 verification	 needs,	 such	 as	 the	 use	 of	
emerging technologies.

The Rapita Verification Suite (RVS) has been used in the critical embedded industry
for over 15 years and supported a number of avionics (civil & defense) and automotive
projects	globally.	Qualification	kits	 for	qualified	RVS products have supported more
than	20	DO-178B	and	C	certification	projects	up	to	and	including	DAL	A.

“We	 use	 Rapita	 tools	 on	 some	 of	 the	
world’s	 most	 complicated	 flight	 control	
systems.	 Compared	 to	 previous	 tools	
we’ve	used	in	the	past,	RVS’s performance
has been much more reliable and robust.”

Collins Aerospace® Flight Controls

Figure 12– Rapita Verification Suite

Collins Aerospace® is a trade mark of Hamilton Sundstrand Corporation in United States under number 6488292. Rational® and DOORS® are trade marks of

International Business Machines Corporation in United States under numbers 78086102 and 78124800.

About Rapita
Rapita	Systems	provides	on-target	software	verification	tools	and	services	globally	
to the embedded aerospace and automotive electronics industries.

Our	solutions	help	to	increase	software	quality,	deliver	evidence	to	meet	safety	
and	certification	objectives	and	reduce	costs.

Find out more
A	range	of	free	high-quality	materials	are	available	at:
rapitasystems.com/downloads

Contact
Rapita Systems Ltd.
Atlas House
York, YO10 3JB
UK

+44 (0)1904 413945

Rapita Systems, Inc.
41131 Vincenti Ct.
Novi, Mi, 48375
USA

+1 248-957-9801

Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G C U S T O M E R S W I T H :

Rapita	Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V	Services

Integration	Services

Qualification

SW/HW Engineering

Compiler	Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems
mailto:info%40rapitasystems.com?subject=

